
Version 1.5.0.01 Changes

Recursion Detection

This version introduces recursion detection into Logic Flow translators. If the Logic
Flow system detects a given translator being activated more than 20 times in 1000
milliseconds, it will assume there is recursion involved and disable the translator to
prevent excess cpu load. In some situations, this can create a false positive. For
example:

In this flow the same memory slot is used for multiple entry points to a flow so a
change to that memory slot could cause multiple pass throughs of some translators.
If this flow were to grow to a much larger variation with many more entry points of
the same memory slot, it could be possible to trip the recursion detection
incorrectly. There are probably better ways to craft this flow but in the case of a
false positive, the values may be increased using the API on port 9600. See the
Pathfinder manual for more information on using the API. For example:

Set LogicFlows#0.LogicFlowFolder#Test.ListTranslator#6ef05ca8-e530-4326-8a35-85e9e41495af
ExecutionLimit="50/1000"

This command would increase the recursion detection limits on the specified
translator to 50 times per 1000 milliseconds.

If a translator gets disabled via the recursion detection, a log message will be
generated and an attempt to send an email message to the critical event email
message if it is configured will be made.

There is no UI for adjusting recursion detection parameters in this version though
that is planned for a future version.

Version 1.5.1.02 Changes

Generic Emulator

Initialization Message
This version adds the ability to configure an initialization message that will be sent
when a generic emulator connects. This allows the emulator to automatically send
login or other initialization messages.

The same escape characters may be used as for the ToSend property of the Device
Emulators. These include:

• \cr = Carriage Return

• \lf = Line Feed

• \t = Tab

• \%XX = hexadecimal two digit ascii character.

• Double slash to escape the escape slash and send the literal value.

In the case of listener types, this message will be sent to each client that connects to
the listener. In the case of client connection types, this message will be sent each
time the client connects.

Additional Emulator properties for Logic Flows
This version also adds some additional properties related to Generic Emulators that
may be used in Flows.

• Connected – This property will be true if there are any clients connected or if
the tcp client is successfully connected and false otherwise.

• ConnectedCount – This property will retain the number of currently
connected clients to the emulator.

• ConnectionLost – This property will switch to True and then back to False
when a client disconnects.

• ConnectionObtained – This property will switch to True and then back to
False each time a client connects.

Version 1.5.3.03 Changes

Infinity
This version adds some basic support for Infinity products. A device that is detected
as an infinity product has a SendToRestApi property which can be used by logic
flows to address the Infinity Rest API. The format of the commands addressed to
this property should be:

• Operator Path Value
• For ecample:

o PUT /api/s/main/audio/speakerMute true

Note that gets are not working at this point in time as we do not want to encourage
polling logic. It is also important to know if the value being sent needs to be
wrapped in quote. Contact support for details on properties that may be
manipulated using the Infinity Rest API.

Memory Slots
This version adds two properties to the main memory slot manager.

• ChangeAllByValue – This property is a write only property that will change
all memory slots that have a certain value to another value. In logic flows it is
only available in the API tree. The syntax is:

o oldvalue-->newvalue
o For example:

▪ Myvalue-->MyNewValue
▪ This would change every memory slot in the system that has a

value of MyValue to the value MyNewValue
• CopyTo – This property would copy the value of a memory slot to another

memory slot. In logic flows it is only available in the API tree. The syntax is:
o sourceslot-->targetslot
o For example:

▪ MySlot-->YourSlot
▪ This would update the value in YourSlot with whatever the

value is in MySlot.

Version 1.5.5.05 Changes

Logic Flows Recursion Detection User Interface
This version adds a user interface for configuring the recursion detection settings on
a translator. Editing a translator now presents an Advanced link.

The startup state checkbox has been moved under this advanced link as well as a
box for the recursion detection settings. Clicking the Advanced link will show or
hide these settings.

50/1000 represents that the recursion detection will disable the translator if the
translator is being analyzed more than 50 times per 1000 milliseconds.

Additionally, there is an API property that should be used with extreme care that
can change the default recursion settings for all new translators. It will also update
any existing translators that are currently at the default settings. This can be cpu
intensive and require a significant amount of writing to disk. Please make a backup
before changing this value. It is available via the API:

• Set LogicFlows#0 DefaultRecursionSettings="50/1000"

Version 1.5.8.07 Changes

Imagine Logical Router Control
Pathfinder Core PRO has added support for Imagine Logical Router Control protocol
for controlling Imagine Routers. To add an Imagine Router into Pathfinder Core
PRO, you first must add the Imagine Device to the Devices list and then you can add
a router. In Devices, click the Add button, enter the IP address and select Imagine
LRC as the investigation type.

Once the device has been successfully added, click on the Routers tab and add a new
Router.

Select the Imagine Lrc type from the Router Type drop down. Give the Router a
name and a description (if desired). Select the Device that was added and select the
router level you wish to add.

Imagine routers have multiple levels and PathfinderCore PRO can control full routes
which route all levels at once by adding the {ALL} level or any given breakaway level
may be added as a separate level. Or both may be added in different routers. This
allows routes that should target all levels to be made on the router with the All
target and routes of individual break away levels to be made on the breakaway
routers.

Once added the router will discover the IOs made available by the selected level and
routes may be manipulated in the same way as other routers in the system

Important Notes: Support of Imagine routers is very new. It should be very much
treated as a beta feature. Also lock states do not currently reflect control locking in
the Imagine router. That may be added as a future feature.

Lwrp STAT Properties
This version includes data obtained from the STAT command in Lwrp for devices
that support it. These read-only properties may be found in the API tree in logic
flows under the device branch that supports it.

There are four types of STAT objects described below:

STAT SRC
• StatSourceAddress = Source Address data.

STAT DST
• Stream = Whether the stream assigned to this destination is up or down.
• Receive Address = Receive address data often used with Aes67 indications.

STAT ICH
• AesSync = Only appears on AES inputs and displays whether AES sync is in

error or ok.

STAT SYNC
• Master – master synchronization data.
• Slave – slave synchronization data.
• Sync – Synchonization source.
• FrequencyAdjust – adjustment value in ppm.

Important Note: Stat Sync data collection is not enabled by default. That is because
it can generate a lot of data especially in systems with large numbers of X nodes. To
enable stat sync data collection for a given device, use the api on port 9600 and send
the command:

SET Devices#0.XNodeCombo#[tcp://172.16.1.95:93].LwrpInterpreter#0
SubscribeToSync=True

Also note that while turning the SubscribeToSync option on for a device will be
saved between restarts, the state is not currently cluster synchronized.

Html5 Panel Changes

Input box
To see a video presentation on this feature visit:
http://pathfinderpc.com/pfcorepro_downloads/panelinputboxes.mp4

Input boxes have been added as an available element in Html5 panels. In the control
selection there is now both a label and input box control. The input box allows user
input. It includes a value property as well as a change and input event. The change
event is raised when the user hits enter or moves off of the input field whereas the
input event is raised as the user makes changes/types. Both of these events raise
the current entered value. This allows for the capture of user input which can then
be applied to logic flows to make decisions and changes. Additionally the input field
has a type property which allows you to switch the input type between a number of
different possibilities including text, numeric, color, etc. For example if you drag an
input box onto a panel and change the type to be a number type and then fill in the
min, max, and step properties you will obtain an input box with a set of arrows for
incrementing and decrementing as well.

http://pathfinderpc.com/pfcorepro_downloads/panelinputboxes.mp4
http://pathfinderpc.com/pfcorepro_downloads/panelinputboxes.mp4

Or selecting the color type will allow for a color selection dialog.

Important Note: This is a beta feature. The types of input boxes that are available
are obtained from the standard Html5 input element. Testing and additional work
is still ongoing to make sure the correct parameters for each type are exposed.

To see a video presentation on this feature visit:
http://pathfinderpc.com/pfcorepro_downloads/panelinputboxes.mp4

Web browser (IFrame) Load Event
This version adds an event to the web browser control (iframe) which cycles false
when the frame starts to load and true when the loading is complete.

http://pathfinderpc.com/pfcorepro_downloads/panelinputboxes.mp4
http://pathfinderpc.com/pfcorepro_downloads/panelinputboxes.mp4

Subpanels
This is actually not a new feature but because several of the features below were
created primarily to allow reusability of panel content and the associated messaging
that goes along with that, it is worth discussing before we get into those topics.

PathfinderCore PRO Html 5 panels include a web browser component which is
essentially just an Html5 iframe component. It can be used to embed other web
pages and components (for example from a corporate page or video link) into a
Pathfinder Core PRO panel. However it can also be used to embed a different panel
into a parent panel. For example:

If you drag a web browser component into a new panel along with two buttons and
then enable the binding on the src property of the web browser component, we can
then use the button presses to load two different subpanels. Enable the binding for
both mouse down and indicator on both buttons and save the panel.

Now in the mouse down property of button one, select the endpoint in the flow
diagram and select the iframe src property as the endpoint.

For the translation make the mousedown true equal to:

/userpanelframemin.php?panel=shared&page=page1

Replacing the panel name (shared) and page name (page1) with the name of the
panel and page you wish to display as a subpanel. Note that it is important to use
the framemin.php page rather than the frame.php page so that the full
PathfinderCore PRO header and menu system do not appear in the subpanel.

Click “Done” and then also allow the reverse binding to be set up so the indicator
will light when the selected page is loaded in the iframe. Repeat the procedure for
button 2 with a different page.

When the panel is executed, the web browser will now load the other panel as a
subpanel of the main one. In this way we can create shared content that can be
loaded in multiple panels as shown below:

Subpanel and shared content problems
The example above works great for many kinds of shared content. For example we
could create a panel for each studio where one of the selection buttons loads a clock
and meter subpanel and another loads an airchain display subpanel. And this works
well with no other concerns.

The challenge comes when the shared subpanel needs to target different things
depending on which parent it is loaded in. For example, what if the subpanel
buttons in the examples above were source selectors but they needed to target a
different destination depending whether they were loaded in Studio 1’s parent
panel or Studio 2’s. The subpanel could be a specific and even paged set of
selections that are common across all studios but would need to target the fader on
which ever studio the subpanel was loaded in. The temptation to solve this problem
would be to create some sort of logic flow that changes what happens depending on
which panel last loaded the subpanel (Studio 1, 2, etc.) But that does not work
because it does not allow for it to be loaded in both at the same time. And the
subpanel itself has no knowledge that it is loaded as a subcomponent of another
panel.

The only way to solve this problem is to introduce messaging that is internal to a
given instance of a browser. We had to create a way for the subpanel to
communicate with the parent panel instead of with a specific destination and vice

versa. That kind of messaging is the purpose of the Panel SetLocal and
PanelMemorySlot features below.

Panel SetLocal
Note: This is considered an advanced feature and is often used in tandem with the
Panel Memory slot below.

Each Html5 panel now includes a write only property called SetLocal. Selecting the
overall panel will display this property in the property tree.

The purpose of this property is to send a message to set another property
somewhere else on the running instance of the panel, its parent, or a subpanel. This
property in addition to the Panel Memory Slots below is different in that it operates
inside a given browser instance of a panel rather than upon all running instances of
a given panel. In reality the distinction is a little more nuanced but will be explored
more as we go through the shared subpanel example below.

In general this property will not have its value set in the property designer but
rather the binding will be enabled and it can then be used/bound to other items in
the panel via the panel’s internal flows. The syntax that needs to be used for this
property is:

<target>|<elementId>|<propertyName>=<PropertyValue>

So for example you could enable the binding of this property and then when a
button is pressed you can set the value of this property to:

iframe_1|MyButton|Indicator=ON

The target portion can either be:

• parent = assumes this panel is loaded as a webbrowser (iframe) subpanel of
another panel and we wish to send a property change to the parent panel.

• local = tries to set a property on the local instance of the panel
• name of a web browser (iframe) element in the form = tries to set a property

on an element in a panel running in a web browser element in the existing
panel. This variation looks for an iframe in the current panel of the correct
name and then passes the property message to the web page running in that
iframe.

Examples:

• parent|MyButton|Indicator=ON

o Attempts to turn the Indicator property On for a Button named
MyButton that is expected to reside on a panel in which this panel is
running as a subpanel.

• local|MyButton|Indicator=ON
o Attempts to turn the indicator property On for a button named My

Button that is expected to reside on this instance of the panel.
• Iframe_1|MyButton|Indicator=ON

o Attempts to turn the indicator property On for a button named
MyButton that is expected to reside on a panel loaded in a web
browser (Iframe) element called Iframe_1.

It is important to understand that setlocal sets properties in this instance of the
browser only. If you have the studio 1 panel loaded on two different computers and
you perform an action that uses the setlocal property to change an element’s
property, that change will only happen on that computer’s instance of the panel
unless other external bindings are also in use. In reality if the change is bound to a
component inside the panel it will remain inside that instance of the panel, but if it is
bound to something like a route change that is outside of the panel it will likely
happen on all. This can be seen because using this property as a binding to a
component inside the panel will not generate a panel based logic flow and binding it
to something outside the panel will. The nuances of this are a bit subtle but should
become clear as we work through the example below.

Panel Memory Slots
Note: This is considered an advanced feature and is often used in tandem with the
Panel set local above.

Panel memory slots are similar to normal memory slots except that they only live
inside a browser instance of a panel. They can be thought of as a javascript variable
that also raises a change event inside the instance of the panel that is executing. The
item can be found in the custom tool section. Dragging it onto a panel will create a
dotted component. It is important to note that this component will be invisible
when the panel is actually executing.

Similar to the setlocal property above, if this is bound using a panel flow to an item
inside the panel (button, iframe, etc), no flow in the larger pathfinder will be
created. Instead the value will just be changed or affect change within the running
instance of the panel only. If the flow is bound to an item outside the panel (for
example a route change of console fader state), then a flow will be created.

The Panel Memory slot has three important properties/events in the property grid:

• panelmemoryslotvalue = the value of the panel memory slot.
• raisetoserver = used to determine whether change events are raised only

inside the local instance of the panel or also to the server.
• Panelmemoryslotchange = an event that fires when the value changes. This

event carries the new value rather than just a true or false as its data.

Shared Subpanel Example

Note: to see a video presentation of the functionality described below visit:
http://pathfinderpc.com/pfcorepro_downloads/reusablesubpanels.mp4

Returning to our example above:

In this case what if the 4 buttons in the subpanel were source selectors? However,
we want them to change the source on a destination that is dependent on which
studio’s parent panel the sub panel is loaded in. To accomplish this, we are going to
use 3 panel memory slots. Two in the Studio 1 parent panel and 1 in the subpanel.

http://pathfinderpc.com/pfcorepro_downloads/reusablesubpanels.mp4
http://pathfinderpc.com/pfcorepro_downloads/reusablesubpanels.mp4

• Studio1 Panel

o In the parent (Studio1) panel we will create two panel memory slots
named currentsource and selectsource. We will enable the
panelmemoryslotvalue and panelmemoryslotchange bindings for
both slots and we will enable the binding on the SetLocal property of
the panel and save.

o currentsource
▪ The panelmemoryslotvalue will be bound to the currentsource

property of a virtual router destination using a panel flow and
a *=* translation. This means that whenever the current
source of that virtualrouter destination changes the number of
the current source will be assigned to this studio 1 panel
memoryslot.

▪ The panelmemoryslotchange event will be bound to the
Studio1 panel’s setlocal property and the translation will look
like: *=iframe_1|currentsource|panelmemoryslotvalue=*

▪ The change event above means that whenever the
currentsource value changes it will attempt to also set the
same value on whatever panel is running in the subpanel
loaded to iframe_1. Of course we have not created a
currentsource memory slot on the panel that will be loaded as
the subpanel yet but we will.

▪ The entire purpose of this panel memory slot will be to pass
the currentsource value to the instance of the subpanel loaded
in iframe_1.

o selectsource
▪ The select source panelmemoryslotchange event will be tied to

the same virtual router destination’s current source property.
Additionally on this slot the raisetoserver needs to be set to
true. This slot will be used to change the route on the
destination whenever its value changes.

• Shared Panel – page 1
o In the Shared panel we will add a memory slot called currentsource to

match and receive the current source from the parent’s current
source memory slot change event. We will enable the
panelmemoryslotvalue and panelmemoryslotchange bindings on this
panel memory slot. Additionally we need to enable the binding on the
shared panel’s setlocal property. And we need to save those changes.

o We will bind each of the button indicators to the value of
currentsource with a translation like:

▪ 1=On
▪ *=Off
▪ Where 1 is the source whose button indicator we want to light

o When the panel is running, this will cause the subpanel to light the
correct button depending on which source number has been fed to it
from the parent.

o Last we will bind the button press to the Shared panel’s setlocal
property with a translation that looks like:

▪ True=parent|selectsource|panelmemoryslotvalue=1
▪ Where 1 is the source whose button has been pressed.

o This will allow the button press to pass the source selected to the
parent panel’s selectsource memory slot. Which if we remember is
bound via its change event to the actual destination’s currentsource.

The interesting part of the steps above is that we can now clone panel 1 to panel 2.
In panel 2 we change the bindings on currentsource and selectsource to a different
destination for Studio2. And we make sure that the panel selection buttons point to
studio 2’s iframe rather than studio 1’s. But the shared panel does not need any
changes. It will just start working for studio 2 and studio 2’s destination. More
importantly if we need to add functionality to the shared component it will work for
both studios.

The key thought process that needs to be utilized is that if the shared content
manipulates something specific then none of these steps are necessary. But if the
shared content needs to manipulate something different depending on the parent
panel it is loaded in, then we need to pass messaging between the internal panel and
the parent to accomplish that.

This is one example of how these features may be used. It could be expanded
greatly. For example the src property of the iframe could be assigned using a
setlocal so that it does not need to be updated for each studio page. Or we could add
additional panel memory slots for manipulating other destinations or even
dynamically selecting the destination at the parent level.

Additionally there are future features planned for embedded routing components
that may make this specific example less necessary. However, even if we add such
components there will always be situations that are custom and do not work with
our preconceived components.

It should also be pointed out that in many situations it is probably simpler, easier,
and more understandable to just clone. Because this is a more advanced feature it is
also more advanced to understand. However, for the times when the embedded
content is duplicated in too many places and needs to be periodically changed, this
allows for that kind of reuse.

Note: to see a video presentation that may provide a clearer explanation of this
functionality visit:
http://pathfinderpc.com/pfcorepro_downloads/reusablesubpanels.mp4

http://pathfinderpc.com/pfcorepro_downloads/reusablesubpanels.mp4
http://pathfinderpc.com/pfcorepro_downloads/reusablesubpanels.mp4

Version 1.5.9.08 Changes

Html5 Fader and Console Fader Control property (Lwch and Qor
support)
This version adds the control property to Html5 panel Fader controls and Html5
panel Console Fader controls.

Traditionally a fader or a console fader is assigned its control point by using the IO
selection which presents a list of sources and destinations in the main audio router.
Selecting a specific source or destination will allow the fader to intelligently function
and present the correct controls to the user of the panel. However, this functionality
when applied to console faders assumes the use of Fach rather than Lwch.

Note: Fach is the control of the physical fader based on its position in the console where as Lwch
allows control over a fader with a specific livewire channel loaded to it wherever it resides in the
console.

Additionally some consoles (Qor based such as IQ and Radius) do not have a direct
correlation between the Ios exposed to the router and faders those Ios may or may
not be tied to. So this selection technique does not work in those cases.

The control property addresses this problem by adding an override of the control
portion of the component. Clicking in the control property will present a list of
control points that may be selected for the component.

When the control property is used, the metering (in the case of console faders) is
defined by the IO property, but the controls (fader, on/off, etc) are defined by the
control property. If nothing is selected in the control property then the control
point is inferred by the IO property. If nothing is selected in the IO property but the
control property is used, then no metering will appear.

Using the control property, Lwch options and Qor faders are now available to these
components where previously they were not available. It is important to note that
Lwch and Qor faders do not have directly inferable metering points, so if metering is
desired it must be manually selected with the IO property in addition to the control
point with the control property. It is possible that in the future we may add code to
attempt to figure out a correct metering point that would be correct for the
assignment but for now it must be a manual decision. It is also important to note
that the control property currently only displays fader objects as control point
options. Xnode sources and destination control points and vmix points should be
selected using the IO property. In the future those as well as XNode mix points may
be selectable via the control property as well.

Version 1.5.11.14 Changes

PULSE in Html5 Button Indicators and LCD Button States
This version adds some additional values to html5 button indicators and LCD button
states. The additional options are PULSE0 through PULSE10000. This feature will
flash the button for the requisite number of milliseconds and then return to the last
requested state. If the indicator state is changed while the pulse flash is in progress
the new state will be returned once the flash time is complete. PULSE0 may be used
to cancel an in progress pulse.

This allows the easy binding of state (ON/OFF) conditions while allowing an
additional flow to control flashing.

For example prior to this feature the following logic might be required:

In this case a GPI causes the button to flash for 5 seconds. And after that the button
either turns on or off depending on the state of VMIX 1. This type of flow can be
useful for situations where you need to flash a button as an alert but retain a known
state after the flashing is complete. With the addition of PULSE this becomes
simpler.

In this case the button indication is tied to the VMIX state but setting pin 1 to low
will cause a 5 second flash. It will then return to whatever state the vmix is
currently in even if that state has changed during the duration of the pulse. This
flow is much simpler.

If the button is an html5 button this can be made even simpler by binding the
indicator to the vmix state within the user panel and only implementing the pulse
(flash) flow in logic flows.

Version 1.5.12.15 Changes

Folder Disable Button

This version adds a disable button to the views in logic flows. It allows the logic
flows designer to disable all the flows in a view and/or its sub views.

This button is only available when a single view is selected.

Clicking the enable/disable button will present a dialog to select whether to enable
or disable and whether to do it recursively.

Selecting Enable or Disable and clicking the Select button will enable or disable all
flows in the selected view. If the recursive option is used it will also enable or
disable all flows in the sub views.

Version 1.5.16.18 Changes

Pathfinder Core PRO Gpio Node

Important Note: This functionality is a preview release. Cluster synchronization of
this feature is not complete. See details below.

This version adds a virtual Gpio node inside Pathfinder Core PRO. This node may be
accessed by browsing to the Gpio nav bar link under the System items. It behaves
very much like the gpio portion of an Axia livewire driver except that the number of
ports is dynamically adjustable and there are some additional advanced features to
this node. This is also the avenue through which multicast gpio capability may be
directly utilized by Pathfinder Core PRO. When you first access this web page it will
detect that the internal gpio node has not been added to the devices table and will
ask you if you wish to do so.

The node may only be used and/or configured after it has been added to the device
list. Click OK to discover the internal Gpio node into the device list. This will also
discover the gpio points into the gpio router as well.

Once the device has been added you will see the list of gpio ports. By default, there
are 4 ports in the system. You can add additional gpio ports by changing the port
count at the top of the screen. This allows you to add any number of gpio ports into
the local virtual gpio node.

Use the edit link to change the property values for any Gpio port.

GPIO Refresher

It is important to understand the various ways Gpios may be used in an Axia
environment.

• Software Gpios with no source address assignment will simply allow closures
to be directly tripped on either GPI or GPO by Pathfinder Core PRO.

o Example: SRCA:””
• If a source address field for a Gpio port uses a livewire channel number in its

address field, this means it will listen to and generate closures to and from an
Axia Console over multicast.

o Example: SRCA:9501
• Finally, if the source address uses an IPAddress/port format it means that the

gpio port should use TCP to connect to the device at that ip address and
monitor the GPIs from the selected port on that device and mirror those
closures on this port’s Gpos. This is the method used by the PathfinderCore
PRO gpio router to route gpio data across a network.

o Example: SRCA:”172.16.1.23/8”

Pathfinder Core PRO Gpio Properties
Pathfinder Core PRO’s gpio node works in the same was as described above by
default. However, it adds a few additional properties for manipulation by advanced
users. The use of each of the Pathfinder Core PRO properties is described below.
These advanced properties are available by using the edit link on each port.

• Name: This allows you to assign a unique name to each gpio port.
• Source Address: This field may be left blank if the closure will be used by

Pathfinder and does not need to follow another port or console’s
functionality. Or you can assign either a livewire channel number or ip/port
value to this field. Note that for ip/port, you do not need to assign it in the
configuration user interface. The gpio router will allow you to manipulate
this field much more easily by just making route changes.

• Multicast Mode: By default, this will be set to Node.
o Node: In this mode using a livewire channel number in the source

address will cause the port to behave in the same manner as a
livewire driver gpio port. Specifically, the port will listen to gpio
messages from the console fader on which the livewire channel
number is loaded and change its GPO pins accordingly. And tripping
the GPI pins of the port will send closures to the Axia Console.

o Console: Changing the mode to console means the port will behave as
if it were an Axia console. Therefore, GPIs that are tripped on this
node will be sent to the GPOs of other Gpio ports on the network that
have the same channel number assigned. And tripping a GPI on one of
those other devices will cause the GPO on this port to change.

• IRoutedTo: By default, this will be set to O. This property is only applicable
to situations where ip/port or livewire channel numbering is used in the
source address. By default, when a GPI comes in from either of these sources
it is applied to a GPO on the port. This property allows you to change that
and apply it to the GPI instead or to None which means it is thrown out.

• ORoutedTo: Similar to IRouted To, this property defines where inbound
GPOs will be sent. By default, they are sent nowhere as this setting replicates
other gpio node functionality. When using IP/port source addressing the
Pathfinder Core PRO gpio node is unique in that it will also subscribe to GPO
changes for the port and these may be routed to I, O, or None.

Using IRouteTo and ORoutedTo it is possible to make a multicast or unicast gpio
route where one ports I’s and O’s mirror another port.

Important Clustering Notes: Version 1.5.16.18 is a preview build of the Pathfinder
Core PRO internal gpio node functionality. Cluster synchronization is not yet
complete. For example, if you use this node in a cluster the route changes and pin
state changes will not be synchronized between the nodes of the cluster.
Additionally, ip/port route changes where the Pathfinder Core PRO internal node is
the source and other equipment is the destination will not work properly on the
remote device if the secondary node in the cluster takes over. This is because the
external IP address of the first node was used in the route change. These issues will
be addressed in a future build, but we thought it was important to make this
available for single node users and for systems integrators to start providing
feedback while we work through the more complex cluster synchronization issues.

Version 1.5.16.19 Changes

Pathfinder Core PRO Gpio Node Clustering

Important Note: Pcp Gpio Node is still very new as it was only introduced in
1.5.16.18. This version adds clustering synchronization to the feature. Please
report any issues you encounter with the functionality.

This version adds synchronization of the PathfinderCore PRO Gpio Node in a cluster.
Port additions and removals as well as port configurations applied to either
PathfinderCore PRO of the cluster will be replicated to the other PathfinderCore
PRO in the cluster. Pin closure states will also be replicated.

There are certain situations where cluster replication of pin states will not occur.
Specifically, if the port has been configured with a multicast gpio channel or snake
routing assignment (IP/port), replication becomes a bit more nuanced. Closures
that are directly tripped will still be replicated. However, closures that are sensed
from the mcast or unicast snake (GPIs from the other snake port) will not be
replicated. This is because it is assumed that both cluster nodes are monitoring
those changes directly from the third piece of equipment and will pick up their
states directly from the other end of the snake. Therefore, cluster replication of that
state would in fact be redundant and could lead to race conditions.

When dealing with unicast snake mode (IP/port assignments), there are some
additional clustering nuances to be aware of. These are most easily discussed via an
example. When you route a gpio node to the PathfinderCore PRO gpio port, the
address field in the gpio port on both cluster nodes will get filled by ipaddress/port.
For example:

• PathfinderCore PRO A = 172.16.1.241
• PathfinderCore PRO B = 172.16.1.242
• Gpio XNode = 172.16.1.85

If you route (using the PathfinderCore PRO Gpio Router) the XNode gpio source 1 to
the PathfinderCore PRO A or B destination 1, the destination port on both
PathfinderCore PROs will look like:

• CFG GPO 1 SRCA:”172.16.1.85/1”

In this example both PathfinderCore PROs are monitoring the GPI changes on port 1
of XNode at 172.16.1.85 and making matching changes on their gpo pins. This is
straight forward.

However, if we route either of the PathfinderCore PRO servers to the XNode Gpio
things get a bit more interesting. We can only apply one IP address to the SRCA field

on the XNode destination. Therefore, Pathfinder Core PRO will use the Axia livewire
address of whichever PathfinderCore PRO in the cluster currently has its event
system active. In the example above Pathfinder Core PRO A would typically be the
active server in the cluster. When you make the route change on either
PathfinderCore PRO, the system will use the active server IP address on the XNode
destination. The XNode destination would look like:

• CFG GPO 1 SRCA:”172.16.1.241/1”

If Pathfinder Core PRO A Server were to fail or get shut down, the B Server will loop
through its routes and find any destination that PathfinderCore PRO A’s gpio ports
were routed to and switch them to Pathfinder Core PRO B’s external livewire ip
address.

• A Fails
• XNode port gets reassigned:

o CFG GPO 1 SRCA:”172.16.1.242/1”

If A comes back online the port will switch back to use the A server when the event
system comes online again.

One important note about this is that the XNode gpio clears its pin states to be all
high each time a route change happens and then reassigns them to the new values
based on the new GPIs. This means that if a snake route is held low on the XNode
based on a low GPI on PathfinderCore PRO, during a cluster failover those pins
might flicker to high and then back to low. This is usually a virtually instantaneous
flip. This should only cause an issue if you have a PathfinderCore PRO GPI that is
unicast snake routed to an XNode (or other Axia gpio device) GPO and that closure is
both normally held low and you have an activity (such as an automation advance)
that happens on the flip from high to low and you fail over to the secondary node in
the cluster. But this is also similar to what would happen if a device supplying that
same closure were to be restarted. Note that this is not an issue for multicast snake
routing.

In the future we may address this issue by using floating IPs where the ip route
would not change but rather the ip address used for the external routes would
float/move between the Pathfinder Core PRO devices.

We highly recommend that users do some testing of this functionality to fully
understand how it works. For the vast majority of use cases it should be seamless.

Version 1.5.18.21 Changes

Pathfinder Core PRO Z/IP One Control

This version adds many additional control points for the Z/IP one which are
available via Logic Flows. Dialing and status items are exposed in the simple tree in
logic flows under a new Z/IP One branch and many more properties are exposed in
the API tree under the device itself.

When selecting an End Point in the Simple tree there will now be a Z/IP One branch
with several properties for any Zip One in the system.

Connect and drop can be used to establish and drop connections. In general, the
Codec settings will not be used as an endpoint since those settings are normally
stored within the call phone book entries. After selecting the Connect property as a
logic flow end point, the translation list will display the list of entries in the Zip One
phone book. Only phone book entries may be used for dialing currently.

There is also a special phonebook entry that only lives in PathfinderCore PRO called
None which when dialed will behave the same as the Drop item. For example:

This flow will dial the Zip one every time Fader 1 is turned on and drop the call
every time it is turned off.

When viewing a start point there are some different options.

It is important to understand the difference between Call#0 state and
ConnectionState. Call state will list a myriad of possible connection statuses
including multiple options for idle and how the connection was established.
ConnectionState reduces this down to much simpler Idle, Connecting, and
Connected options. As such it is recommended for most situations where logic
needs to be fired based on the connection being active or disconnected. The
ConnectedTo property will contain the matching phone book entry to the one

selected in the Call Connect property example above. Therefore, you can display the
current call connection phonebook entry name.

In addition to these properties, the API tree contains a much larger set of properties
matching from the Z/Ip One Lwcp API. Consult the Zip One documentation for
details on many of these other properties.

Pathfinder Core PRO IPort Control

This version adds many additional control points for the IPort. In the simple tree
there will be a new IPort branch which will expose the Encoder and Decoder enable
and disable options. We have limited those options only to the simple tree as most
of the other properties related to the Zip One mpeg side of the configuration are
considered advanced and not normally dynamically adjusted.

Most of the other settings found on the Configuration pages of the Iport are available
via the API. Because the API matches the object layout of the device’s Lwrp protocol
some of the new settings can be found in a variety of places. The new paths include:

LwrpInterpreter#0.LwrpRoot#0.Decoder#
LwrpInterpreter#0.LwrpRoot#0.Encoder#

LwrpInterpreter#0.LwrpRoot#0.Cfg#0.Enc#
LwrpInterpreter#0.LwrpRoot#0.Cfg#0.Dec#

For example, the destination properties for a decoder or encoder are available via
the LwrpRoot#0.Cfg#0.Enc and LwrpRoot#0.Cfg#0.Dec paths whereas the encoder
algorithm and bitrate settings are available via the LwrpRoot#0.Encoder and
LwrpRoot#0.Decoder paths.

Additionally, there is a LwrpRoot#0.Cfg#0.Gpio path that controls whether the gpio
ports are enabled or disabled in the system. The actual Gpio port may or may not be
present depending on whether the encoder or decoder are active. All of these paths
are of course available for use in logic flows via the API tree. Please note that some
are read only and so will only appear when using a start point.

Tip: To figure out which properties match config options in the Iport UI, open a TCP
connection to PathfinderCore PRO using Putty to port 9600 and subscribe to
changes on the device in question.

sub Devices#0.ZephyrIPort#[tcp://172.16.1.71:93] $MAX_DEPTH=-1

Then you can make changes in the IPort’s UI and see the changed properties in Core
PRO. This can be useful to see where certain properties are located in the API tree.

Version 1.5.19.23 Changes

The changes in this version described below all apply to the Html5 user panels.

Digital and Analog Countdown Timer Changes

Both the digital and analog countdown timers now have some additional properties.

• Elapsed Event: This is an event that can be raised when the count down timer
completes.

• StopMode: This property defines what happens when the countdownstart is
set to false while the countdown is progressing. The options are:

o StopAndReset: stopping the timer by setting countdownstart to false
will cause the timer to stop and be reset to the countdown value.

o Pause: stopping the timer by setting countdownstart to false will
cause the timer to stop where it is in the countdown process and hold
that value. Setting countdownstart to true again will cause the
countdown to continue from where it left off.

• CountUp: Changing this value to True instead of False will cause the timer to
count up rather than down to the selected countdownlength. If
countdownlength is zero it will count up indefinitely until stopped and/or
reset.

• Reset: This is an action property that can be used by logic flows and/or
bindings to reset the counter. Setting it to true will cause the timer to reset.

• ResetMode: This property defines what happens when a reset is issued and a
countdown is in progress. The options are:

o ResetAndStop: Setting reset to true will cause the timer to reset and
stop its countdown.

o ResetAndContinue: If the timer is running this will cause it to reset
and continue running. If the timer is stopped this will just reset the
value.

It is important to note that currently the timer does not automatically reset when
the countdown completes. We may add an option for that in the future depending
on customer feedback. If that functionality is desired, it can be obtained by using
the property bindings to hook the elapsed event to the reset state such that when
the timer elapses reset is triggered. This can be accomplished either by using the
flow in elapsed to change the reset or by using the flow in reset to change based on
the elapsed start point. In both cases the panel must be saved with the binding
buttons for these properties/events turned on to find those options in the flow
property tree.

For example:

In the picture above the binding buttons for both elapsed and reset have been
enabled and the panel has been saved with those buttons enabled. Now select the
reset property field and click the start point in the bottom corner. Then browser
into the user panels, the specific panel, and the digital countdown control, and select
the Elapsed property:

Select True=True for the translation

And click Done. After saving the panel if the countdown elapses the timer should
automatically get reset.

Fader Control Changes

• The Fader control will now display the value of the fader if you hover over

the fader.
• The mouse wheel can now be used to manipulate the fader.

Controlling non-fader numeric properties
The fader can now be tied to values other than just traditional console faders. Using
the control property there will be an additional button in the dialog to switch to the
typical logic flow endpoint tree:

Clicking the Endpoints button will bring up that tree. From there you can pick any
numeric property in the tree to connect with. If you select a non-numeric property
the dialog will give you a warning. You should avoid using non-numeric properties
with the control property. See below how to use non- numeric properties. For
example, we could select a numeric memory slot as the control point for the fader:

After saving the panel the fader would now control and update based on the value of
the memory slot. In order for this to work properly there are several other
properties that can be used:

• Min: the minimum value allowable by the fader
• Max: the maximum value allowable by the fader
• Step: the steps that can be used for the change. A value of 1 would mean the

value has to be integers whereas a step value of .1 would allow for a single
decimal place in the values.

• Type: This property has two options:
o Audio: the scale of the fader will follow a typical audio fader where

larger moves in the optimal range of the fader relate to smaller
decibel changes.

o Linear: the scale is a direct linear scale.

It is important to note that when using the control property to select the
functionality for the fader, the system will try to automatically set the min, max, and
step properties if the system knows what they should be for the given control point.

Controlling non-numeric properties
Another option is to not use the control property to bind the functionality and
instead to bind the display value and value change properties directly to properties.
This can be useful in situations where a translation is necessary. For example, we
could connect a fader up to a true/false or gpio value. In this case we do not use the
control property but instead we would enable the binding on the slidervalue
property and the slidervaluechanged event.

Set the min and max for 0 and 1 and the step for 1 and the type to linear. Next set
the slidervaluechanged event to the gpo pinstate of a gpio port.

 For the translation translate 0 to low and 1 to high.

Then in the SliderValue property select the same GPO pinstate as the endpoint and
reverse the translation. That will make sure that if something else changes the gpio
pin that it will be updated in the fader:

For this example you may also want to turn the metrics off since there are only two
valid states.

This is probably not the best use case for this functionality, but it shows how you
can use the fader control to manipulate any value in the system either directly using
the control property if it is a numeric property or via translation and the SliderValue
and SliderValueChanged property and event.

Console Knob

This version adds a rotary knob that may be used in the same way as the fader
above. If you have not reviewed the fader changes above, please do so as the same
properties for numeric and non-numeric control as well as min, max, step, etc.
properties also apply to the console knob object.

This control can also have its control property used to select a console fader or
other numeric property in the system to control in the same manner as described
for the fader control above. In addition, this component also shares the indicator
property with button objects so that the knob color may be changed based on some
indication state.

Transform Property

This version exposes the transform css property for use in html components. This
can be used to rotate, skew, and scale objects. For example, you can rotate a label by
creating the label and then entering rotate(90deg) into the transform css style.

It is important to note that not all components (especially the more complex ones)
will transform well and work properly when rotated. Also when you return to the
object in the designer it may not show the simple value you entered as the html will
translate that into a matrix to accomplish the transform. For more details about the
transform property see:

https://www.w3schools.com/cssref/css3_pr_transform.asp

Console Fader Control Changes

The Console Fader now includes a drop down list for source profile selection when
it is connected to a console fader. For example:

https://www.w3schools.com/cssref/css3_pr_transform.asp
https://www.w3schools.com/cssref/css3_pr_transform.asp

The list is obtained from the enabled source profiles for the fader in question. This
feature may also be disabled if you do not want your panel users to be able to
change the source profile on a fader. This can be accomplished using the
allowsourceprofilechange property of the console fader.

Shift Edit Property List

This version adds an option for advanced users where holding the shift key while
clicking in the user panel property editor fields will bypass the usual helper dialogs
and allow direct editing of the text. This can be useful for things like copying and
pasting color values. Shift click to highlight the text box without the helper dialog
and then click again to edit the test editing for the property.

List Selector

This component is still a work in progress. Significant user interface work needs to
be done to make the usage of this component intuitive to configure. Until that work
is done this component is available for advanced users that understand the API.
This component provides a drop-down list for selecting elements in the system. For
example, it could be used as a source selector for a virtual router or a show profile
selector for a console. Unfortunately, until we finish a more intuitive configuration
user interface, some knowledge of the API and inner working of PathfinderCore PRO
are required to configure this component. A thorough understanding of SapV2
(Appendix A) will help in the configuration of this component. Also feel free to
reach out to support for guidance.

There are 4 properties that are used together to describe the list options and
another two for event and state:

• Listsearchpath: This holds a SapV2 object path and optional property value
for the root from which all objects in the list will be obtained. For example:

o Routers#0.VirtualRouter#4 SapObjectType=VirtualSource
▪ This specifies that we will be filling the list with data from

virtual sources in virtual router number 4.
o Devices#0.Qor#[tcp://172.16.1.59:93].LwcpInterpreter#0.LwcpRoot

#0.AppControl#0 ObjectName=ShowProfile
▪ This specified that we will be filling the list with data from

show profiles on the Qor at 172.16.1.59.
• Listsearchdepth: The number of branches below the listsearch path root to

look for elements. Many times, this will be 1 for one level deeper than the
root selection, but it could be higher or -1 for infinite. For Example:

o Devices#0.Qor#[tcp://172.16.1.59:93].LwcpInterpreter#0.LwcpRoot
#0.AppControl#0.ShowProfile#0

▪ This is one branch deeper than the search path in the last
example above.

• ItemDisplayProperty: This is the property that will be used as the display
data for each object. This is what the user sees. In both of the examples
above this would likely be the name property.

• Itemselectvalue: This is the property whose value will be used in the change
and current value events. In the examples above it would be the Id and/or
ObjectId properties.

• CurrentValue: this can be used by logic flows to select the displayed value.
• Change event: this can be used to make a change when a different item in the

drop down is selected. The value that will be available in the translation is
defined by the itemdisplayproperty.

Let’s work through two examples.

List Selector Example 1
In example 1 we will use the selector to present a list of sources from a virtual
router. When the user selects a different source it will change a specific destination
on that router. Make sure you have a virtual router in the system. In this case we
will use VirtualRouter 4. Set the following property values:

o Listsearchpath: Routers#0.VirtualRouter#4
SapObjectType=VirtualSource

o Listsearchdepth: 1
o Itemdisplayproperty: Name
o Itemdisplayvalue: Id

This means that we are looking for objects up to 1 level deep below the
Routers#0.VirtualRouter#4 path whose SapObjectType=VirtualSource. The last
part of this is important so that the selector does not also show destinations. For
each source that is found the selector will create an item in the select list whose
display value is taken from the name property and whose select value is taken from
the id property. This will display a list of sources by name from virtual router 4 and
the value used when a selection is made will be the source’s id.

Next enable the binding on the currentvalue and change properties. For the change
property select Destination 1’s current source property in the virtual router.

And use *=* for the translation. This will make sure that any time a new selection is
made in the list, the number of that source will be passed to the destination’s
currentsource property thereby affecting a route change.

For the currentvalue property, select destination 1’s current source again as the
start point. Translation would again be *=*. This will ensure that if the destination
route changes even by some other means that the drop down list will change to
show the correct source.

In this way we have created a route selector from a drop down list.

List Selector Example 2
In example 2 we will use the selector to present a list of show profiles for a qor/iq.
When the user selects a different show profile for the qor/iq, it will change the show
profile. Set the following property values (modifying for your own device):

o Listsearchpath:
Devices#0.Qor#[tcp://172.16.1.59:93].LwcpInterpreter#0.LwcpRoot
#0.AppControl#0 ObjectName=ShowProfile

o Listsearchdepth: 1
o Itemdisplayproperty: Name
o Itemdisplayvalue: ObjectId

This means that we are looking for objects up to 1 level deep below the
Devices#0.Qor#[tcp://172.16.1.59:93].LwcpInterpreter#0.LwcpRoot#0.AppControl
#0 path whose SapObjectType=ShowProfile. For each show profile that is found the
selector will create an item in the select list whose display value is taken from the
name property and whose select value is taken from the ObjectId property. This

will display a list of sources by name from Qor/Iq in question and the value used
when a selection is made will be the show profile’s id.

Next enable the binding on the currentvalue and change properties. For the change
property select the console’s appcontrol ShowProfId property.

And use *=* for the translation. This will make sure that any time a new selection is
made in the list, the number of that show profile will be passed to the console’s
showprofid property thereby affecting a show profile change.

For the currentvalue property select showprofid property again as the start point.
Again use *=* for the translation. This will ensure that if the show profile changes
even by some other means, that the drop-down list will change to show the correct
show profile.

In this way we have created a drop-down list for selecting a new show profile.

We realize that until more intuitive user configuration user interfaces are created,
this component may be challenging. If you need to understand how to use it for a
specific task, please reach out to support and realize that this is a beta feature and
may require some time for them to obtain the correct parameters for your task.

Version 1.5.19.24 Changes

Timestamp Memory Slot

This version adds a time stamp memory slot that can be used to grab time stamps.
This can be useful in displaying the last time something happened in a user panel.

When you first create a time stamp memory slot, you will probably not apply a
value. The pattern field can also be left blank. It can be used to specify the format of
the time stamp. We will describe that in more detail below. After creating the
timestamp memory slot, it can be used in logic flows by applying an endpoint to the
SetTimeStamp write only property of the memory slot.

For example:

This logic flow will set the memory slot to the current date and time every time the
specified gpio pin goes low.

The format of the date time stamp can be changed using the pattern field. If you edit
the memory slot again you will see that the default format has been assigned to the
memory slot:

The possibly patterns follow the .net pattern for date/time strings as specified at:

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-
time-format-strings

and

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-
and-time-format-strings

For example:
Using a pattern of just D will return:
Thursday, 13 June 2019

Using a pattern of s will return:
2019-06-13T06:41:20

More examples (examples in us – see links for other languages):
d => 6/15/2009

D => Monday, June 15, 2009

f => Monday, June 15, 2009 1:45 PM

F => Monday, June 15, 2009 1:45:30 PM

yyyy-MM-ddTHH:mm:ss => 2019-06-13T06:41:20

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings

Version 1.5.19.25 Changes

Web UI Code changes

One of the challenges with working in a web-based environment is the speed at
which both the languages and tools change. It is not uncommon to attend a
conference where the gurus are avowing a certain technology for molding javascript
as the thing we should all be using just to hear the same guru 2 years later saying –
“yeah; I was wrong about that – this is what we should be doing”. This can make it
challenging to keep the code viable for original and new team members on a long-
term project. And periodically it makes sense to reevaluate.

This build is the product of a month’s worth of code refactoring in order to begin
making use of some of the more current javascript development tools including
nodejs, webpack, and babel. The code has been broken up into much more easily
manageable files and then packed back together using web pack during the build
process for deployment. This allows us to move forward with the code in a more
efficient manner while maintaining and improving efficiency with the browser as
well. In order to accomplish this almost all the web page code files have been
tweaked, modified, and manipulated in some fashion over the course of several
hundred code repository commits. Whenever as much code changes as has in this
build there is the possibility of bugs. While we have attempted to test thoroughly, if
anything is not working in your environment please be ready to report the issue to
support so that we can fix it as quickly as possible.

Data Table changes

In the course of refactoring the code mentioned above we also updated to a new
version of the library we use to present web-based data tables. Unfortunately,
between the original version and the version we are now using the tool underwent
its own overhaul of its API. In order to make use of the new features this meant
modifying and/or rewriting much of the code that uses and populates those data
tables. However, this also allowed us to make use of a new feature called deferred
rendering. In previous versions and table rows were rendered in the browser
whether or not they were visible. In the new version this data is kept in background
datasets and only rendered as html as needed. This is much more efficient and can
reduce the load time of very large datasets significantly. It also paves the way for
some more changes we have planned to improve the performance with large in
browser data sets even more. Again, please contact support if you encounter any
issues when using this version so we may address them as soon as possible.

Additional sort field in routes table

This version adds an additional sort icon on the left edge of the routes table.

This sort icon will sort according to the destination’s ip address and io number
where those are organized numerically rather than by text.

Version 1.5.19.26 Changes

Qor/Iq LwcpSs support

This version adds support for an additional port and protocol exposed in current
versions or Qor and Iqx. That port offers additional control points via logic flows
including monitor section control as well as eq and dynamics. These will be
available under the Console control branch for the Iq/Qor in question. For example:

Clicking on any of these new properties will provide a description as to what the
property is used for. Additionally, there are even more parameters that are exposed
by this protocol under the device in the API tree. Note that this protocol only exists
in Qor and iQx based consoles. Also, the protocol within the console itself is still
considered experimental. While all tests so far are working well, please report any
issues that do not work as expected so that we may investigate.

Because this is very much a beta feature, the support for this protocol may also be
disabled through the advanced options (Configuration, edit advanced options) by
adding the following parameter:

SET Devices#0 LwcpSs=False

Qor/Iq Monitor section html5 user panel component

This version also adds an additional component to user panels that acts as a monitor
section for an Iq/Qor based console.

Dragging this component onto a panel will present a monitor section for an Iq/Qor
console:

In order to assign it to a specific Iqx or Qor based console, select the component in
the panel and click the control property:

In the list of available control points you will find one for each Iq/Qor whose type is
LwcpSsRoot. Those are the only control points that may be used with this
component.

In the future we will probably limit the list to only these options when the monitor
section component is selected. Also note that the LwcpSs support discussed above
must be enabled in order to use this component.

Using the console fader controls and this monitor section it is pretty easy to create a
console control panel in PathfinderCore PRO.

There are a few points that need to be made about this monitor section component:

• The meter option button currently does not do anything. It is for future use.
• The clock and timer functionality is controlled by PathfinderCore PRO and

not the console and so will not be in sync with the console timer and
countdown clock. This is because those control points are not currently
available in the LwcpSs control protocol. That may change at some point in
the future.

• As this is also very much a beta feature it may also be disabled using an
advanced option via the edit options button on the configuration page:

o SET Devices#0 QorMonitor=False

Please contact support if you need assistance or encounter any issues with this new
feature.

Html5 User Panel Console Button border-gradient property

This version adds a new property for console buttons called border-gradient.

No value or a value of complex will yield the same button style as before whereas a
value of simple will remove the background top to bottom gradient.

The reason we have made this additional property has to do with sizing. The
original design is a button centered in a background. But as you resize, this can
cause the button to be off by a pixel one way or the other. At smaller sizes this can
become an objectionable artifact. The simple design is just a button with a border
and therefore the border scales more perfectly. The first has a slightly softer feel
while the second scales better.

It is important to note that this version uses the simple mode for the console fader
which will alter the look of your existing panels that use that component slightly.

Html5 User Panel Autoscaling

This version adds an additional property to panels themselves called autoscale. To
see it select the user panel background in the designer.

No value or a value of none will work the way panels have always worked. The
other options will automatically change the size of the panel components according

to a change in the browser window dimensions. If you select based_on_height,
changes in the browser’s height will cause the amount of height change to be used as
the factor for scaling up height and width of the components. Changing the browser
width will do nothing. Conversely selecting based_on_width will cause the amount
of width change to be used as the factor for scaling up height and width of the
components. Changing the browser height would do nothing. Setting it to height
and width will cause the height change to be used for the height difference of the
components and the width change to be used for the width difference.

While intuitively you might believe that height_and_width is the correct choice, it
rarely is. That is because it causes buttons and components to be stretched in
strange ways.

On the other hand scaling based on height alone will maintain the correct aspect of
the component while just scaling it up and down:

In general, if the aspect ratio of the panel objects is important and the screen it will
be displayed on is a widescreen monitor it is best to choose scaling based on height.
If it is a wide screen monitor turned for portrait display then the best option is
based on width. If aspect ratio does not matter like in the case of pure buttons
where square or rectangle does not matter then based on height and width may be
used.

It is best to create the panel in question and save it with one of the scale options and
then play with the browser size to get a feel for which option is most appropriate.
You need to refresh the panel after you resave with a change to the option to see the
effect.

Also note that there appears to be a bug in this version with the height_and_width
option in relation to the console fader and monitor section components. Use
based_on_height or based_on_width for panels with these components until a patch
is created.

Version 1.5.20.28 Changes

Important note: The changes below required a number of changes to the user panel
default skin css file. If the components discussed below do not appear correctly in
the panel designer web page, your executing panel, or in the router-details web
page, try forcing the browser to refresh its cache. In Chrome this can be

accomplished by holding Ctrl and Shift while clicking the reload this page icon
while on the web page having difficulties. You should only have to do this once on
each of these three pages and then the browser will fetch and cache the revised
stylesheet file.

Fader user panel component

This version adds several properties to the Fader user panel component. Most of
these properties are exposed under the style section header in the property list for
the component.

faderstyle property

Fader objects can now have one of three different styles: default, simple, and
touchbar.

Default represents the same fader style as PathfinderCore PRO has had previously.
The simple style removes the complexity of the fader and turns it into a simple

rectangle with rounded edges and an optional center line. The touchbar style is
designed for touch interfaces. In this variation dragging with your finger (using a
touch screen) or mouse anywhere in the fader rectangle will cause the bar level to
go up or down. This is particularly suited to touch screens (especially smaller ones)
as it increases the area that is available for touch manipulation rather than requiring
a grab of the smaller specific fader object.

orientation property

Fader objects can now be oriented either horizontally or vertically (the default)
using the orientation property.

It is important to note that there is still some work to be done here with this
property. By default, when you flip the orientation, the height and width are
retained rather than reversed as expected making for a squashed funky graphic.
This will be fixed in a future build. However, in the interim you can hold the shift
key while resizing to stretch it into the correct size. Sometimes a save is necessary
to get the slider width to settle in properly. Another solution is to manually swap
the width and height values in the property list and then clicking save in order to set
the initial correct height to width scaling ratio. These issues will be resolved in a
future build.

Invert properties

Faders also now include the properties: invert. motioninvert, and metrictextinvert.
The invert property may be used to flip the up/down or left/right functioning of the
fader. The motion invert and metrictextinvert should be used along side the invert
property in order to set the mouse, scroll wheel, and metric layouts to match the
functional inversion. For example, it may be desired for the wheel up functionality
to still increase the gain even though the fader is now upside down or it may be

desirable to have the wheel motion follow the fader up and down state on the
screen. Since faders may also be used to control other numeric values instead of just
audio this opens up more of those possibilities. As always, it is also possible to turn
the metrics off and use the faders that way as well.

Color and style properties

Under the style/slider property sections are a number of new properties for styling
the actual slider. These include:

• slider-width: can be used to alter the width of the slider.
• slider-opacity: can be used to alter the opacity of the slider.
• slider-background: Primarily used by the default fader style, this can

produce a background gradient. For example, to turn the default fader red,
one might change the background to a value like:

o linear-gradient(#770000, #ff0000)

o
• slider-back-color: Primarily used for the simple and touch bar styles, this

will set the background color of the simple slider or of the touchbar.

o
• Default fader style properties

o slider-top-color: adjusts the color of the top edge of the default fader
style. Due to opacity blending, this can be a subtle change.

o slider-bottom-color: adjusts the color of the bottom edge of the
default fader style. Due to opacity blending, this can be a subtle
change.

o slider-default-line0-color: adjusts the color of the first line on the
default fader.

o slider-default-line1-color: adjusts the color of the second line on the
default fader.

o slider-default-line2-color: adjusts the color of the third line on the
default fader.

o slider-default-line3-color: adjusts the color of the fourth line on the
default fader.

o slider-default-line4-color: adjusts the color of the fifth line on the
default fader.

o slider-default-line5-color: adjusts the color of the sixth line on the
default fader.

o slider-default-line6-color: adjusts the color of the seventh line on
the default fader.

• Simple fader style properties
o slider-simple-line-color: adjusts the color of the line on the simple

fader style.
o slider-simple-line-display: adjusts whether the line on the simple

fader style is displayed or not.

Console Fader user panel component
Many of the properties discussed above in the fader object have also been exposed
in the Console Fader so that the color and style of the slider within the larger
console fader object may be manipulated. These styles correspond directly to the
styles above and include:

• fader-slider-background
• fader-slider-back-color
• fader-slider-top-color
• fader-slider-bottom-color
• fader-slider-default-line0-color
• fader-slider-default-line1-color
• fader-slider-default-line2-color
• fader-slider-default-line3-color
• fader-slider-default-line4-color
• fader-slider-default-line5-color
• fader-slider-default-line6-color
• fader-slider-simple-line-color
• fader-slider-simple-line-display
• fader-faderstyle

Router XY Matrix user panel component

This version adds a Router XY Matrix component both as a user panel component
and as an additional tab on the router-details page. It can be added to a panel using
the RouterXY Matrix component.

After adding the component to the page, resize it and then using the router property
select a router to use with it.

It is important to note that the component will not fill with actual router data while
viewed in the designer. This means that the actual column and row header size may
be inflated since the default designer example population only has 10 sources and
destinations. It is useful to view it in the actual executing panel to see how it will
function.

Using the XY Matrix
Once a matrix has been added to a panel, a router assigned to it, and the panel saved.
View the panel to see how it functions.

• Search bar: The top of the component contains a search bar. This allows the
user to search sources or destinations by typing in either the S or D field to
reduce the columns and rows shown. It can be further filtered by using the
drop downs to specify a specific device. It is important to note that the
device drop downs will not be present on virtual routers. They will only exist
on the audio and/or gpio router. The search bar may also be hidden if
desired as described in the styling section of this document below.

• Sources: Source Names are displayed in the columns at the top of the table.
Hovering over any column header will cause a yellow bar to appear
highlighting that source and expanding the name of the source to show its
full description. Double clicking on a source column header repeatedly will
cause the grid to jump to each destination the source is routed to and
highlight it with the yellow hover bars. If the source is not routed to any
destination, nothing will be highlighted.

• Destinations: Destination Names are displayed in the left most column of
each row. Hovering over any row header will cause a yellow bar to appear
highlighting that destination and expanding the name of the destination to
show its full description. Double clicking on a destination row header will

cause the grid to jump to the source that is currently routed to that
destination. If no source is routed to the destination, then nothing will be
highlighted. Destination names may also be greyed out indicating the
destination is locked either at the user level or system level and can therefore
not be changed. Double clicking on a locked row header will still navigate to
the locked cross-point if a route exists.

• Routing Grid: Each cross-point in the grid will have one of several colors
indicating the cross-point state:

o The default background color (light gray in the pictures above)
indicates no route exists at that cross-point.

▪
o Blue indicates the route exists at that cross-point. Note that if the

cross point is locked there may also be either a system level or user
level lock icon on the cross point.

▪

▪

▪
o Red indicates a cross-point that has been preset for an action.

Clicking on a cross point will preset it and the action buttons will then
become enabled for use.

▪
o To take, clear, or lock a route, click on the desired cross-point to

preset it and then click the corresponding Take/Clear or lock button
in the top left corner of the grid. See more on the action buttons
below. The cancel button can be used to clear all selected presets
without making any changes.

▪
• Action Buttons: There are 4 action buttons. In the top left corner of the grid

is the Take/Clear button, the cancel button, and the lock/unlock button. In
the bottom right corner is the preset rotation button. In all cases the button
will be grayed out when it is not available for use because no selection
(presets) have been made. When a preset is made the border and text of the
available button will light up showing it is available for use and hovering
over the button will light up its background.

o Take/Clear: The Take/Clear button will display either take or clear
depending on whether the route that is preset is currently an active
route or not. Clicking this button will either clear or take the route.

▪
o Cancel: The Cancel button may be used to cancel any presets without

making any route changes.

▪
o Lock: The lock button will only be available if an existing cross point

is selected and may be used to add a user level lock on the route. If
the cross point is already user level locked, the lock button will show
unlock instead and allow you to unlock the route if you have the
correct user rights to do so.

▪
o Preset Rotate: The preset rotate button is located in the bottom right

corner of the matrix component. When disabled it will show a P.
When a preset is selected, it will show the count of selected presets.
Click on the button will cause the hover bars to highlight the selection
moving the scroll bars to the correct preset cross point if necessary. If
the matrix has been configured in multiple preset mode, this button
will loop through the currently selected presets.

▪
• Scroll Bars: Horizontal and Vertical scroll bars will appear and/or disappear

to the right and below the matrix if there are more destinations or sources
than can be displayed. The scrollbars may be manipulated by dragging
anywhere within the bar or by clicking and/or holding the arrows at either
end of the scroll bar. The scroll bars are slightly wider than some normal
windows scroll bars because the grid is designed to be highly accessible for
touch panel use.

o

Configuration properties

The Router XY Matrix has many properties that can be changed and manipulated to
affect how it works when used in a panel. While there are many properties listed
here the three most important as far as functionality changes are concerned are
routerpath, matrix-mode, and touch-hover.

• Style Properties
o routerpath: Used to select the router which will be used with the

matrix.
o matrix-mode: There are three ways you can configure the xy matrix

to work.

▪ Preset (default): Clicking a cross-point presets it for a take or
clear. Clicking a different preset will clear the previous preset.
Clicking a cross-point that has already been preset will remove
the preset. Only one preset selection is allowed at a time.

▪ Preset-multiple: In this mode you can preset multiple routes
for a clear or take and then take or clear them all at once. The
preset rotator button will allow you to loop through the
selected presets.

▪ Single: In this mode all action buttons are removed, and routes
are made just by clicking on a cross point. This is useful for
simple non-critical virtual routing matrices. But this mode
should not be used for mission critical matrices because it is
too easy to accidentally click or touch a cross point and make
an inadvertent change.

o touch-hover: When this option is set to true and the matrix is being
used with a touch screen, the first tap will generate the same hover
lines as you see when hovering a mouse over the cross-point. The
second touch will preset. If this property is false, the first touch will
both set the hover lines and set the preset.

o destination-search, destination-device-search, source-search,
source-device-search: Each of these correspond to whether that
particular search field appears and is available in the search bar.
Setting all of them to false will hide the search bar. This is particularly
useful for small matrices where searching is not necessary. Please
note that even if the device selection drop-down fields are set to true,
they will still not appear for virtual routers. They will only appear if
used with an audio or gpio router. Virtual routers will display the
textual search fields for both source and destination if they are
enabled in this property.

o fixed-col-row-length: This defined the length of the row and column
headers in pixels.

o row-height: Defines the height of the rows and columns in the grid. It
is important to note that the grid will always be filled. Therefore, if
there are not enough entries to fill the grid, these parameters may be
larger than this height. Also, if you reduce this parameter you may
find the grid extending off the bottom of the component. To correct
this, reduce the font-size as well until it fits again. The sizing of items
in the grid is a delicate balance so if you start altering these
parameters from the defaults, you may have to tweak to get it to
display correctly. The height is intentionally large enough for touch
use.

o route-engaged-color: This is the color (blue by default) of cross-
points where a route exists.

o route-preset-color: This is this the color (dark red by default) of
cross-points that have been preset for an action.

o route-hover-color: This is the color of the hover bars that show the
row and column the mouse is hovered over.

o grid-line-color: This is the color of the lines in the grid.
o disabled-button-text-color: This is the color of the text in disabled

action buttons.
o enabled-button-text-color: This is the color of the text in enabled

action buttons. This property is no longer used as the text color for
enabled uses the specific button’s enabled color below.

o disabled-button-background-color: This is the background color of
disabled buttons.

o enabled-button-background-color: This is the background color of
enabled buttons. This is overridden by hover effects.

o locked-destination-background-color: This is the color of cross-
points that are locked.

o locked-destination-text-color: This is the color of the text in the row
headers for destinations that are locked.

o matrix-scroll-bar-height: This is the height of the horizontal scroll
bar and is also used as the width of the vertical scroll bar. Scroll bars
will automatically disappear if all cross-points can fit on the matrix.

o matrix-search-bar-height: This is the height of the search bar.
Please note that the correct way to hide the search bar is to disable
the search field properties mentioned earlier in this property list.

o scroll-bar-color: This is the color of the active part of the scroll bars.
o scroll-bar-background-color: This is the color of the inactive

(background) portion of the scroll bars.
o column-row-header-back-color: This is the background color of the

row and column headers.
o column-row-text-color: This is the color of the text for column and

row headers.
o route-hover-text-color: This is the color of the text for column and

row headers when the hover/highlight selection bar is active on that
row or column.

o cancel-enabled-button-color: This is the color used by the border
and text when the cancel button is active as well as the background
color of the cancel button if the button is enabled and the mouse is
hovering or clicking on it.

o take-enabled-button-color: This is the color used by the border and
text when the take/clear button is active as well as the background
color of the take/clear button if the button is enabled and the mouse
is hovering or clicking on it.

o lock-enabled-button-color: This is the color used by the border and
text when the lock button is active as well as the background color of
the lock button if the button is enabled and the mouse is hovering or
clicking on it.

o preset-enabled-button-color: This is the color used by the border
and text when the preset rotation button is active as well as the

background color of the preset rotation button if the button is enabled
and the mouse is hovering or clicking on it.

o disabled-button-border-color: This is the border color used by
disabled action buttons.

o grid-offset: This is the number of pixels of offset between the edge of
the matrix and the scroll bars.

o hover-event-timeout: This is the number of milliseconds that a
cross-point must be hovered over before raising the hover events that
may be used in logic flows.

• Action Properties

o trigger-take-clear: This property may be used by a logic flow and/or
binding to remotely press the take/clear button. This will only have
an effect if there is a cross point preset for action.

o trigger-lock: This property may be used by a logic flow and/or
binding to remotely press the lock button. This will only have an effect
if there is a cross point preset for action.

o trigger-cancel: This property may be used by a logic flow and/or
binding to remotely press the cancel button. This will only have an
effect if there is a cross point preset for action.

o set-preset: This property allows a logic flow to preset a cross-point.
The syntax involves a string with the source and destination path with
the __X__ between the two. Example:

▪ tcp://172.16.1.97:93?l=SRC&d=src&i=2&t=aaudio__X__tcp://1
72.16.1.72:93?l=DST&d=dst&i=31&t=aaudio

• Events
o hover-source-name: Event raises the name of the source for the

cross-point that the mouse is currently hovering over.
o hover-source-description: Event raises the description of the source

for the cross-point that the mouse is currently hovering over.
o hover-source-path: Event raises the path of the source for the cross-

point that the mouse is currently hovering over.
o hover-destination-name: Event raises the name of the destination

for the cross-point that the mouse is currently hovering over.
o hover-destination-description: Event raises the description of the

destination for the cross-point that the mouse is currently hovering
over.

o hover-destination-path: Event raises the path of the destination for
the cross-point that the mouse is currently hovering over.

o preset-source-name: Event raises the name of the source for the
cross-point that has been preset.

o preset-source-description: Event raises the description of the
source for the cross-point that has been preset.

o preset-source-path: Event raises the path of the source for the cross-
point that has been preset.

o preset-destination-name: Event raises the name of the destination
for the cross-point that has been preset.

o preset-destination-description: Event raises the description of the
destination for the cross-point that has been preset.

o preset-destination-path: Event raises the path of the destination for
the cross-point that has been preset.

One of the interesting things you can do with the hover and preset events is to bind
the path to the io field of meters. This allows you to create a panel where hovering
over a cross-point also shows metering for that cross-point. Note that metering
does not yet support io binding to virtual router ios.

Router XY Matrix router details web page

In addition to being able to use the Router XY matrix in a user panel, there is also
now an XY Matrix tab on the router details web page of each router.

It functions exactly like the user panel matrices except with all properties in their
default states.

Version 1.5.20.29 Changes

Scene Editing
This version introduces a web page for creating and editing scenes. It is important
to understand that scenes in PathfinderCore PRO are nothing more than a list of
property changes. They could be a list of route changes but they could also be a list
of memory slot changes, a list of vmix changes, or any combination of the above.
Any property that is available in the system can be a part of a scene. To view the
available scenes in the system, click the scene navigation menu item.

The activate button will cause all items in the scene to be set to their defined state.
The “IsActive” field displays whether all items in the scene are in their requested
state. This property can also be used in logic flows to take other actions. The clone
link will create a copy of the scene. This is useful if you need to create multiple
scenes with the same items but different values for each item. The edit link will
open the editor and display the data for an existing scene. The minus icon will
delete the scene. Clicking the plus icon will open the editor with a new blank scene.

To create a new scene, select the scenes navigation menu item and then click the
plus icon.

Each scene must have a unique name and a scene may not be saved without a name.
Use the name field to create a name for the scene. Use the plus icon to add items to
the scene.

Route point scene items

By default the scene addition dialog will open with a route destination import
dialog. Select the router from the import from list and then select the destinations
to import. Use the shift key to select multiple destinations.

Items from different routers may also be a part of the same scene by clicking the
plus icon again and selecting ios from a different router in the routers drop down.
Click import to bring the ios into the scene.

The scene editor will import the route destinations into the scene. The requested
value reflects the source that will be taken if that scene item is executed. By default
it will be set to the current source that is routed to the destination. This can be
changed by clicking the RequestedSource link. This will open a list of sources that
are present on the selected router so that you can select a different source as the
value for the route point in the scene item. Clicking the destination will allow you to
select a different destination for the scene item if you selected the wrong one and
need to change it. Clicking the minus icon will delete the item from the scene. At

this point the scene still does not exist. You have to click apply to save the changes
and return to the scene list. At that point the scene will be available for use. This is
important to remember. Changes made while editing a scene will not actually be
stored and become usable until the changes have been applied.

Property scene items

In addition to route points any property in the system can be a scene item. After
clicking the add button to add a new scene item to a scene you will also find an
endpoints button to switch the route destination dialog to a property selection
dialog.

This is the same dialog used to select an endpoint in logic flows. In the example
above we are adding a program buss assignment property on an Element console to
the scene. The Ios button will return to the route selection dialog. The select button
will select the property and import it as a scene item into the scene. The system will
remember whether the last item imported during a given scene editing session was
a property or route point and return to the last used dialog. You can switch back

and forth using the Endpoints and IOs buttons from the corresponding dialog. After
importing a property it will have slightly different links in the scene itself.

In this case you will see a RequestedValue link and a Property link. The property
link will allow you to change the property you selected if you selected the wrong
one. By default, the value that will be used for the property item is set to whatever it
is at the time the scene item is created. This can be changed by clicking the
RequestedValue link.

This will open a value selector. The value selector may be different depending on
the type of property you are manipulating. For example if the item is a color
property, it might present a color selection dialog. If the property requires text, a
text box may be presented. Or it could present a drop down of possible values. In
the case above, the program buss assignment could either be on or off, so select the
option you want the scene item to set. Note this does not change the current state of
the console in the system unless the scene is activated. At this point you are only
editing what would happen if you activated the scene.

Order and pause

The scene editor also has a “move up” and “move down” button. These are used to
organize the order in which a scene sends its messages to the equipment when
activated. It is very important to understand that the order is generally irrelevant
because a scene execution does not wait for a change to complete before sending the
next scene item change message. They are usually sent as a block of changes and so
the actual changes may not happen in the equipment in the same order in which
they were sent to the equipment. If the execution order is important it is possible to
add pause items into the scene. This will cause the scene to pause as it iterates
through the items for a number of milliseconds. To add a pause, click the plus icon
and then from the route Ios dialog, click the pause button.

The system will ask for the number of milliseconds to pause and after clicking OK, a
pause item will be added to the scene.

Selecting the pause item (or any scene item in the scene) and then using the Up and
Down arrows will allow you to manipulate the order used to send the scene
messages and to manipulate where pauses occur in the scene execution.

Current Scene State and Troubleshooting
Once a scene has been created the list of scenes will show whether the scene is
active or not in the “IsActive” field. If you expect a scene to be active and it is not,
you can see what items failed to change by editing the scene.

The requested value will show the expected value for each scene item in order for it
to be considered active and the current value will show what the actual value of the
scene item is. Note: there is currently an issue that the currentvalue data is not
updated without exiting and re-entering the scene edit. In the example above we
can see that two of the scene items are in the correct state to make the scene active
and the other two are not.

Scenes and Logic Flows
There are a number of properties that may be used with scenes in logic flows. When
an endpoint is selected each scene has an ActivateScene property that can be set to
true in order to cause all scene items to be executed.

As a Start point, two properties are available: IsActive and SceneState.

The IsActive property will either be true or false depending on whether all items in
the scene are currently at their requested value. The SceneState property extends
this slightly with three options: All, Some, Or None. This will change depending on
whether all items have their requested values, some do, or none do.

Version 1.5.20.31 Changes

Generic Device Emulators

Watcher TriggeredValue property

Generic Device Emulator Watchers now have an additional momentary property
called TriggeredValue. When the watcher input is discovered that value will be
assigned to the TriggeredValue property momentarily and then the value will be set
back to blank. It is momentary in order to raise changes when the same value
enters the emulator repeatedly. This is most useful in combination with the regular
expression option below.

Watchers and Regular Expressions

Generic Device Emulator Watchers now support the use of regular expressions (also
called regexes). Regular expressions are an advanced language used for pattern
matching in textual information. Specifically, we use the Microsoft dotnet variation
of regular expressions. Regular expressions are beyond the scope of this document,
but more can be learned using the links below:

https://www.regular-expressions.info/

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-
expression-language-quick-reference

http://regexstorm.net/tester

To use a regular expression in a Watcher, use either Regex.Match(<expression>) or
Regex.IsMatch(<expression>) for the value of the watcher. For example:

https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference
http://regexstorm.net/tester
http://regexstorm.net/tester

In this case we have added a watcher named MyRegexWatcher. Using the
Regex.Match syntax where the regular expression is between the parenthesis, we
can capture the desired data. The expression listed in this case will match anything
other than a new line character.

Regex.Match will cause the Triggered property to trip true just like watchers have
done previously and that can be used in a flow. However, because a regex can be
used to match multiple different chunks of text, it is often also useful to have the
exact chunk of text that was matched available to a flow. That is where the
TriggeredValue property above is useful. For example:

Regex.Match(..ll.)

This will match any series of 5 characters where the third and fourth characters are
l. So, this would match Yello, Hello, Mello, hhlll, hhllh, etc. Any of these values if they
entered the emulator would cause this watcher to trip its Triggered property to
True and would cause the TriggeredValue property to pass the value that caused the
match. As another example, what if we were trying to extract a duration from a
satellite message.

CBS050

We could use a regex such as this:

Regex.Match((?<=CBS).{3}

This regex would cause the watcher to fire any time it sees the 6 characters where
the first three are CBS and it will put the three characters that fall after the CBS into
the TriggeredValue property. This expression makes use of the lookback feature of
regular expresssions.

A different watcher could then be created for a different show from the same
emulator.

Regex.Match((?<=NBC).{3}

In addition, you could use Regex.IsMatch(). This does the same thing except the
TriggeredValue will output true if a match exists rather than the value of the match.
So, this option is largely redundant to the triggered property and will be more useful
in logic flows as discussed below.

It is important to factor in carriage returns and linefeeds when thinking about
pattern matching if the incoming data is a line-based protocol. Incorrectly
considering the existence or lack of existence of these characters when parsing
incoming data will cause incorrect results. For example (.*) matches all characters
except a line feed. If the protocol uses carriage returns and line feeds at the end of
each message, you could use something like (.*\r\n) or ((?s).*). The latter uses
single line mode as described below.

Warning: Regular Expressions are extremely advanced and can appear to be very
complicated. One joke about regular expressions is that once you solve a problem
with a regular expression you now have two problems. However, they can also be
awesomely powerful for the situations where they are needed. It is one of the most
commonly used and advanced text pattern matching and manipulation languages
across all programming languages used today. However, they will also be slower
and more cpu intensive than the normal matches Pathfinder does because they have
not been optimized at compile time in the same way as the native code. Therefore,
they should be used with caution and (like seasoning) sparingly. Use it when you
need it and not where Pathfinder Core PRO’s inherent pattern matching is a better
option. Also test thoroughly. It is quite easy to design a regular expression that you
think is correct but misses certain edge cases. The regex tester listed in the regex
links above can be very useful in this case.

Also note that there are a number of options that can be used within the expression
to cause the pattern matcher to function differently. For example, by default the dot

character “.” matches any character except the new line. If you want it to match the
new line character as well, you can turn on the single line option.
Regex((?s).*).

In this case the inline (?s) tells the regular expression engine to use the single line
option when analyzing. The options can be found at:
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-
expression-options

Again, this is an advanced feature and incorrect use can cause unpredictable results.
But it is also a very powerful tool for certain situations.

Logic Flows

Translation Advanced Field for Conversion List Item Editing

This version adds a field under the advanced link of the translation dialog that can
be used to manually enter the data for a conversion item. It is called the Advanced
Conversion field. This allow advanced users to bypass some of the helper dialogs
(like the color selections dialog) and enter the conversion item entry directly. It is
important to note that incorrect data entry into this field can cause unpredictable
results.

To use the field, select a conversion list item and then click the Advanced link.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options
https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options

Enter the correct Conversion text into the advanced field. The syntax is
<FromValue>=<ToValue>. Example:

l=True

If the From or True value needs to include an equals sign, then enclose the value in
Quotes.

"abc=frs"=True

In this case the from value will be abc=frz. It is also very important to note that the
helper dialogs attempt to present friendly information which may or may not be the
underlying value needed in the conversion. For example, when using the current
source path property, the conversion list and normal drop-down lists will show you
the friendly name of the source. But the actual conversion list item needs the uri
based pathio which looks something like:

"tcp://172.16.1.53:93?l=SRC&d=src&i=6&t=aaudio"

If you are uncertain, create an example of what you are trying to do using the
normal conversion list selection methods and then select it to view in the advanced
field the actual values that need to be applied. If you have questions, contact
support. Again, this is an advanced option for certain unique scenarios.

Translation <NoChange> option

If the value <NoChange> is applied to the “to” portion of a translation, then the
output of the translator will not be changed. For example:

AAA=True
BBB=<NoChange>
*=False

In this case an input value of AAA will result in True, BBB not cause anything to
change on the output of the translator, and anything else will result in False. In
many cases a NoChange is not required because you can just not supply the input
and then nothing will happen if that input occurs. But in situation where you are
using the * as a catchall but want to explicitly exclude a value from making a change,
this can be used. The drop-down lists for possible To values should now include this
and it can also be manually entered for a conversion item in situations where the
property is textual. In cases where it is a color or numeric property type, you can
use the Advanced field described above to enter the <NoChange> value for the
conversion list item. <NoChange> is not applicable to the “from” side of a
translation and will be interpreted literally if entered on the “from” side.

Translation * in to conversion list items

This is not a new feature but we have realized that it was not well documented. It is
common to have a conversion list item in a translator of

=

But it is not well known that the * on the “to” side does not need to be by itself. For
example, you could have:

*=Hello * My name is

In this case the input value would replace the * in the output value. So, it might end
up outputting: Hello Dan My name is

Or for example:

This can provide similar functionality natively in the flow translation as string
builder memory slots can. * cannot be used in the middle of data on the from side.
Use regular expressions to do complex matching if needed as described below.

Translation Regular Expressions

Regular expressions as described in the device emulator watchers above can also
now be used in the From portion of a conversion list item. In general, you will use
the Advanced conversion field described above to achieve this functionality:

In this case we have created a flow where fader gain values that are not negative
will result in a button turning on and otherwise the button indicator will be off.
Because fader gain generates lots of data as it slides we have also increased the
recursion detection to prevent this flow from getting disabled.

We are using the IsMatch property here so the conversion list item will be used if
the value applied is a match in the regex. The use of regular expressions in
translations is very similar to what we have described above in the generic emulator
section so review that section for details. Again it is extremely important to be
aware of the warnings listed above in the discussions of regexes as they apply here
as well. They can be slower and more cpu intensive. Use them only where needed
and use the normal translation elsewhere.

Sap Property Router

This version introduces a new router type called SapProperty router. The basic
concept is that any property that can be read from in PathfinderCore PRO can
become a router source and any property that can be written to can become a router
destination. Perhaps an easy example might be the GpioByPin router from the
Legacy PathfinderPro. It was possible to create a router of individual gpio pins
instead of routing entire ports. This can be accomplished in a SapPropertyRouter in
PathfinderCore PRO by browsing to the Routers navigation link and clicking the plus
icon to create a new router and then selecting the SapPropertyRouter from the
available router options.

Then click Add and the new router will be created. This router does not yet have
any ios in it.

Click the details link and then click the points tab. Similar to the virtual router, you
will see an import sources and import destinations button as well as a new
Translation button. However, clicking the import sources or import destinations
button for this router will display the property selector used in logic flows.

In this case we are going to select a gpi pin state property. Provide a name and
description for the IO (or allow it to use a default one and click Select). Repeat for
other pins you want as sources. Then import the destinations.

Note that if the ports you are using for destinations are on a livewire driver or
Pathfinder Core PRO gpio node then you could use GPI pins as the destination and
route gpi to gpi. When done it might look something like this.

Now if you go to the routes tab you will see the destinations with a take table of the
sources and you can make route changes.

Here I have routed GPI pin 5 to GPO pin 1. Therefore, any closures that take place
on pin 5 will be replicated on pin 1.

If we click back to the points tab you will also find a Translation button. Clicking on
that button will open the translation pattern used for any values that pass from the
source property to routed destination properties.

There is a single translation pattern that is used between the source values and
destination values. In this case it is *=* and therefore a pin low on the source side
will cause a pin low on all destinations that source is routed to. We could change
this translation to be l=h and h=l such that lows on the source would generate high
to any destination that source was routed to. Another interesting option might be to
change the output properties to be pulse properties rather than pin state properties.
Then you could make the translation be l=5000. This would cause the output to go
low for 5000 ms each time the input went low and nothing to happen when the
input went high.

If you have been using logic flows for some time you might be wondering why we
need this. We could do all of this with flows. The usefulness of doing it in a router
comes into play when what would be the start point of a flow needs to change
dynamically. Another example might make this clearer. Suppose we have a vmixer
assigned to each air chain. Channel 1 of the vmixer represents the feed from the

studio console. There is a gpi pin in the studio which turns the vmix channel on.
This is simple to accomplish with a logic flow:

However, what if we have 5 studios and any studio could be assigned to the air
chain. Now in logic flows this becomes much more complex because we have to
build flows for each variation of studio to air chain possibility. However, this
becomes easy with a property router. Again, on the source side of the router we
select GPI pin state properties. But on the destination side we pick all of the air
chain vmix IN state properties.

Once the items are selected, we can change the translation to be:

Now when we route a studio pin to the airchain vmix, the low from the studio will
turn on and off the vmix state of whichever airchains that studio happens to be
routed to.

We can then extend this example by using a virtual router where the virtual source
package includes the audio console program buss audio source and the pin source
from the SapProperty router and the destination package includes the vmix channel
input audio destination and the vmix state property from the property router. The
signals get married together such that a single virtual route change will switch both
audio and signaling seamlessly. And that virtual router can then be controlled by a

third-party application using something like Probel without that application
needing to know that we are actually switching numerous things under the hood.
This opens up a whole new world of what can be routed.

Another interesting example uses many of the new features described above. What
if we wanted to route a tcp stream of song data to different destinations depending
on what is currently on the air. We could create generic device emulators for each
destination and each song data source. Using the regex capability above we could
add a watcher to the emulators on the source side that looks like:
Regex.Match((?s).*)

This will match any data coming in. Then we create a new property router and for
the sources we choose the watcher TranslationValues. For the destinations we
select the ToSend property of the destination generic emulators. This will
essentially pass any data that comes in the source emulator to the output of
destinations that source is routed to. Then we could marry those points as well into
the air chain virtual router such that audio, studio pin to vmix state, and songdata
are all married together as a single virtual route. See the 1.4 documentation if you
are unfamiliar with combining base sources and destinations into a single package
in virtual routers.

Another possibility might be to route memory slots. Or we could use the duration
regex example above to capture different satellite duration data as source points in
a router that then gets passed on to countdown clocks. The point is you can now
route anything Pathfinder knows about.

A few words of caution. In all of the examples above we made all of the sources in a
given property router the same type; all gpios, or all watcher TranslationValue
properties. And all of the destinations in a specific property router were of a
specific type as well; all gpios or all vmix states or all generic emulator tosend
properties. While this is not strictly required, it is usually good practice. Once you
start mixing io property types in the same router’s sources or destinations, the
translation table can become non-intuitive and it is possible to output the wrong
data to devices. PathfinderCore PRO does have some validation steps to prevent
some of that but the possible property list is so vast that we might not catch all
invalid values. Keep your signaling layers separate in separate property routers and
then marry them together as layers in a virtual router.

Additionally, obviously there is no route state in the equipment for this type of
routing. PathfinderCore PRO is doing the lifting to accomplish it. This means that in
order to retain the route state between restarts, this router has to store all route
vhanges (not the values transitioning through the routes) to the backing storage. In
the case of the fanless engine which uses compact flash for this storage, we have
implemented some protections to reduce the write cycles. But it is not
recommended to make recursive millisecond route changes on Property routers if it
can at all be avoided; for example a rotation circuit that continuously loops through

changing property routes. This is less of a concern with the R2 platform which uses
SSD and the vm version.

All of the new features in this build are very much beta features. So please report
any issues you might have so that we can investigate.

